Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications

Identifieur interne : 000687 ( Chine/Analysis ); précédent : 000686; suivant : 000688

Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications

Auteurs : RBID : Pascal:11-0391544

Descripteurs français

English descriptors

Abstract

Tapered aluminum-doped vertical zinc oxide nanorod arrays have been prepared by using simple electrodeposition at 75 C from an aqueous solution of zinc nitrate and aluminum nitrate. Two substrates were used, i.e., copper indium gallium (di)selenide solar cells and a solar thermal absorber. The resulting nanorod arrays were of high optical quality, indicting their applicability as a light coupling layer via a moth-eye effect by means of the subwavelength structure. The weighted global reflectance of the substrates' surface is decreased after coating it with the light coupling layer. The coating layer boosts the solar cells' short-circuit current without an obvious effect on their open-circuit voltage and changes the solar thermal absorber layer to a novel solar selective surface. The studies show that the aluminum-doped vertical zinc oxide nanorod arrays are an excellent light coupling element for both solar cell antireflective coating and solar thermal selective surfaces.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0391544

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications</title>
<author>
<name>JIE CHEN</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>HONG YE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Thermal Science and Energy Engineering, University of Science and Technology of China</s1>
<s2>Hefei 230026</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230026</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ae, Lorenz" uniqKey="Ae L">Lorenz Ae</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>YANG TANG</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kieven, David" uniqKey="Kieven D">David Kieven</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rissom, Thorsten" uniqKey="Rissom T">Thorsten Rissom</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Neuendorfa, Julia" uniqKey="Neuendorfa J">Julia Neuendorfa</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lux Steiner, Martha Ch" uniqKey="Lux Steiner M">Martha Ch. Lux-Steiner</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0391544</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0391544 INIST</idno>
<idno type="RBID">Pascal:11-0391544</idno>
<idno type="wicri:Area/Main/Corpus">002A39</idno>
<idno type="wicri:Area/Main/Repository">002376</idno>
<idno type="wicri:Area/Chine/Extraction">000687</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium</term>
<term>Aluminium addition</term>
<term>Antireflection coating</term>
<term>Aqueous solution</term>
<term>Copper</term>
<term>Electrodeposition</term>
<term>Evacuated tube</term>
<term>Gallium selenides</term>
<term>Indium selenides</term>
<term>Moth-eye structure</term>
<term>Nanorod</term>
<term>Open circuit voltage</term>
<term>Protective coatings</term>
<term>Reflectance</term>
<term>Selective surface</term>
<term>Short circuit currents</term>
<term>Solar absorbers</term>
<term>Solar cell</term>
<term>Solar energy</term>
<term>Variable section</term>
<term>Zinc</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Section variable</term>
<term>Addition aluminium</term>
<term>Nanobâtonnet</term>
<term>Energie solaire</term>
<term>Dépôt électrolytique</term>
<term>Solution aqueuse</term>
<term>Cellule solaire</term>
<term>Absorbeur solaire</term>
<term>Facteur réflexion</term>
<term>Revêtement protecteur</term>
<term>Courant court circuit</term>
<term>Tension circuit ouvert</term>
<term>Surface sélective</term>
<term>Revêtement antiréfléchissant</term>
<term>Tube sous vide</term>
<term>Oxyde de zinc</term>
<term>Zinc</term>
<term>Aluminium</term>
<term>Cuivre</term>
<term>Séléniure d'indium</term>
<term>Séléniure de gallium</term>
<term>GaSe</term>
<term>ZnO</term>
<term>Structure en oeil de mouche</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Zinc</term>
<term>Aluminium</term>
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tapered aluminum-doped vertical zinc oxide nanorod arrays have been prepared by using simple electrodeposition at 75 C from an aqueous solution of zinc nitrate and aluminum nitrate. Two substrates were used, i.e., copper indium gallium (di)selenide solar cells and a solar thermal absorber. The resulting nanorod arrays were of high optical quality, indicting their applicability as a light coupling layer via a moth-eye effect by means of the subwavelength structure. The weighted global reflectance of the substrates' surface is decreased after coating it with the light coupling layer. The coating layer boosts the solar cells' short-circuit current without an obvious effect on their open-circuit voltage and changes the solar thermal absorber layer to a novel solar selective surface. The studies show that the aluminum-doped vertical zinc oxide nanorod arrays are an excellent light coupling element for both solar cell antireflective coating and solar thermal selective surfaces.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>95</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Thin film and nanostructured solar cells</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>JIE CHEN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HONG YE</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>AE (Lorenz)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YANG TANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KIEVEN (David)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>RISSOM (Thorsten)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>NEUENDORFA (Julia)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LUX-STEINER (Martha Ch.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ENNAOUI (Ahmed)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Thermal Science and Energy Engineering, University of Science and Technology of China</s1>
<s2>Hefei 230026</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Institute of Heterogeneous Material Systems, Helmholtz Center Berlin for Materials and Energy</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s1>1437-1440</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000509474080020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0391544</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Tapered aluminum-doped vertical zinc oxide nanorod arrays have been prepared by using simple electrodeposition at 75 C from an aqueous solution of zinc nitrate and aluminum nitrate. Two substrates were used, i.e., copper indium gallium (di)selenide solar cells and a solar thermal absorber. The resulting nanorod arrays were of high optical quality, indicting their applicability as a light coupling layer via a moth-eye effect by means of the subwavelength structure. The weighted global reflectance of the substrates' surface is decreased after coating it with the light coupling layer. The coating layer boosts the solar cells' short-circuit current without an obvious effect on their open-circuit voltage and changes the solar thermal absorber layer to a novel solar selective surface. The studies show that the aluminum-doped vertical zinc oxide nanorod arrays are an excellent light coupling element for both solar cell antireflective coating and solar thermal selective surfaces.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D06C02C1</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Section variable</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Variable section</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Sección variable</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Addition aluminium</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Aluminium addition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Adicion aluminio</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Nanobâtonnet</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Nanorod</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Nanopalito</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Energie solaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Solar energy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Energía solar</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Dépôt électrolytique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Electrodeposition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Depósito electrolítico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Solution aqueuse</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Aqueous solution</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Solución acuosa</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Absorbeur solaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Solar absorbers</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Facteur réflexion</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Reflectance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Coeficiente reflexión</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Revêtement protecteur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Protective coatings</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Revestimiento protector</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Courant court circuit</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Short circuit currents</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Surface sélective</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Selective surface</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Superficie selectiva</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Revêtement antiréfléchissant</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Antireflection coating</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Revestimiento antirreflexión</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Tube sous vide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Evacuated tube</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Tubo en vacio</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Aluminium</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Aluminium</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Aluminio</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>GaSe</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Structure en oeil de mouche</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Moth-eye structure</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>269</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000687 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000687 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:11-0391544
   |texte=   Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024